Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 258, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431843

RESUMO

The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Unlike one-band superconductors (SCs), a conceptually distinct Higgs amplitude mode can arise in multi-band, unconventional superconductors  via strong interband Coulomb interaction, but is yet to be accessed. Here we discover such hybrid Higgs mode and demonstrate its quantum control by light in iron-based high-temperature SCs. Using terahertz (THz) two-pulse coherent spectroscopy, we observe a tunable amplitude mode coherent oscillation of the complex order parameter from coupled lower and upper bands. The nonlinear dependence of the hybrid Higgs mode on the THz driving fields is distinct from any known SC results: we observe a large reversible modulation of resonance strength, yet with a persisting mode frequency. Together with quantum kinetic modeling of a hybrid Higgs mechanism, distinct from charge-density fluctuations and without invoking phonons or disorder, our result provides compelling evidence for a light-controlled coupling between the electron and hole amplitude modes assisted by strong interband quantum entanglement. Such light-control of Higgs hybridization can be extended to probe many-body entanglement and hidden symmetries in other complex systems.

2.
Supercond Sci Technol ; 33(2)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35935601

RESUMO

Overpressure (OP) processing of wind-and-react Bi2Sr2CaCu2Ox (2212) round wire compresses the wire to almost full density, decreasing its diameter by about 4 % without change in wire length and substantially raising its J c . However, such shrinkage can degrade coil winding pack density and magnetic field homogeneity. To address this issue, we here present an overpressure predensification (OP-PD) heat treatment process performed before melting the 2212, which greatly reduces wire diameter shrinkage during the full OP heat treatment (OP-HT). We found that about 80 % of the total wire diameter shrinkage occurs during the 50 atm OP-PD before melting. We successfully wound such pre-densified 1.2 mm diameter wires onto coil mandrels as small as 10 mm diameter for Ag-Mg-sheathed wire and 5 mm for Ag-sheathed wire, even though such small diameters impose plastic strains up to 12% on the conductor. A further ~20% shrinkage occurred during a standard OP-HT. No 2212 leakage was observed for coil diameters as small as 20 mm for Ag-Mg-sheathed wire and 10 mm for Ag-sheathed wire, and no J c degradation was observed on straight samples and 30 mm diameter coils.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33737796

RESUMO

Multifilamentary Bi2Sr2CaCu2Ox (Bi-2212) wire made by the powder-in-tube technique is the only high temperature superconductor made in the round shape preferred by magnet builders. The critical current density (J C ) of Bi-2212 round wire was improved significantly by the development of overpressure heat treatment in the past few years. Bi-2212 wire is commercially available in multiple architectures and kilometer-long pieces and a very promising conductor for very high field NMR and accelerator magnets. We studied the effects of precursor powder and heat treatment conditions on the superconducting properties and microstructure of recent Bi-2212 wires. Short samples of recent wire with optimized overpressure processing showed J C (4.2 K, 15 T) = 6640 A/mm2 and J C (4.2 K, 30 T) = 4670 A/mm2, which correspond to engineering critical current densities J E (4.2 K, 15 T) = 1320 A/mm2 and J E (4.2 K, 30 T) = 930 A/mm2.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30220915

RESUMO

We study here the effect of axial strain on the degradation of the critical current Ic for bare and reinforced, overpressure processed Bi-2212 conductors. We show that reinforcement markedly improves the conductor's stress limit, doubling it from ~150 MPa in the bare conductor to ~300 MPa when reinforced. We find also that certain processes used to reinforce the conductor slightly reduce the Ic degradation strain limit from ~0.6% to ~0.4%. Stress vs strain data taken from the samples studied here has been used to create a finite element model to explore the feasibility of using a reinforced Bi-2212 strand (produced by Solid Material Solutions) in a small test coil. The model predicts an IC limited coil with a maximum hoop strain of 0.31%, well below the experimentally verified strain limit, and is designed to lead to Bi-2212 coils that are not strain limited, but Ic limited.

5.
Supercond Sci Technol ; 29(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28479675

RESUMO

Overpressure (OP) processing increases the critical current density (JC ) of Bi2Sr2CaCu2Ox (2212) round wires by shrinking the surrounding Ag matrix around the 2212 filaments, driving them close to full density and greatly increasing the 2212 grain connectivity. Indeed densification is vital for attaining the highest JC . Here, we investigate the time and temperature dependence of the wire densification. We find that the wire diameter decreases by 3.8 ± 0.3 % after full heat treatment at 50 atm and 100 atm OP. At 50 atm OP pressure, the filaments start densifying above 700 °C and reach a 3.30 ± 0.07 % smaller diameter after 2 h at 820 °C, which is below the melting point of 2212 powder. The densification is homogeneous and does not change the filament shape before melting. The growth of non-superconducting phases is observed at 820 °C, suggesting that time should be minimized at high temperature prior to melting the 2212 powder. Study of an open-ended 2.2 m long wire sample shows that full densification and the high OP JC (JC varies by about 3.1 times over the 2.2 m long wire) is reached about 1 m from the open ends, thus showing that coil-length wires can be protected from leaky seals by adding at least 1 m of sacrificial wire at each end.

6.
Sci Rep ; 5: 8285, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666114

RESUMO

Why Bi(2)Sr(2)CaCu(2)Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10)), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°) c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J(c)(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J(c) optimization process appears to be the key step in generating this highly desirable microstructure.

7.
Sci Rep ; 4: 7305, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467177

RESUMO

Ba(Fe(1-x)Co(x))(2)As(2) is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, J(c). Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature, T(c), of the material. In this paper we demonstrate that strain induced by the substrate can further improve J(c) of both single and multilayer films by more than that expected simply due to the increase in T(c). The multilayer deposition of Ba(Fe(1-x)Co(x))(2)As(2) on CaF2 increases the pinning force density (F(p) = J(c) × µ0H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m(3) at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.

8.
Nat Mater ; 13(4): 375-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24608141

RESUMO

Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J(c). To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O(7-x) and (Bi, Pb)2Sr2Ca2Cu3O(10-x) are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O(8-x) (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high J(c) of 2,500 A mm(-2) at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries.

9.
Nat Mater ; 12(5): 392-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23455850

RESUMO

Significant progress has been achieved in fabricating high-quality bulk and thin-film iron-based superconductors. In particular, artificial layered pnictide superlattices offer the possibility of tailoring the superconducting properties and understanding the mechanism of the superconductivity itself. For high-field applications, large critical current densities (J(c)) and irreversibility fields (H(irr)) are indispensable along all crystal directions. On the other hand, the development of superconducting devices such as tunnel junctions requires multilayered heterostructures. Here we show that artificially engineered undoped Ba-122/Co-doped Ba-122 compositionally modulated superlattices produce ab-aligned nanoparticle arrays. These layer and self-assemble along c-axis-aligned defects, and combine to produce very large J(c) and H(irr) enhancements over a wide angular range. We also demonstrate a structurally modulated SrTiO3(STO)/Co-doped Ba-122 superlattice with sharp interfaces. Success in superlattice fabrication involving pnictides will aid the progress of heterostructured systems exhibiting new interfacial phenomena and device applications.

10.
Nat Mater ; 11(8): 682-5, 2012 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-22635041

RESUMO

The K- and Co-doped BaFe(2)As(2) (Ba-122) superconducting compounds are potentially useful for applications because they have upper critical fields (H(c2)) of well over 50 T, H(c2) anisotropy γ < 2and thin-film critical current densities J(c) exceeding 1 MA cm(-2) (refs 1-4) at 4.2 K. However, thin-film bicrystals of Co-doped Ba-122 clearly exhibit weak link behaviour for [001] tilt misorientations of more than about 5°, suggesting that textured substrates would be needed for applications, as in the cuprates. Here we present a contrary and very much more positive result in which untextured polycrystalline (Ba(0.6)K(0.4))Fe(2)As(2) bulks and round wires with high grain boundary density have transport critical current densities well over 0.1 MA cm(-2) (self-field, 4.2 K), more than 10 times higher than that of any other round untextured ferropnictide wire and 4-5 times higher than the best textured flat wire. The enhanced grain connectivity is ascribed to their much improved phase purity and to the enhanced vortex stiffness of this low-anisotropy compound (γ~1-2) when compared with YBa(2)Cu(3)O(7-x) (γ~5).

11.
Nat Mater ; 9(5): 397-402, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20190768

RESUMO

Understanding new superconductors requires high-quality epitaxial thin films to explore intrinsic electromagnetic properties and evaluate device applications. So far, superconducting properties of ferropnictide thin films seem compromised by imperfect epitaxial growth and poor connectivity of the superconducting phase. Here we report new template engineering using single-crystal intermediate layers of (001) SrTiO(3) and BaTiO(3) grown on various perovskite substrates that enables genuine epitaxial films of Co-doped BaFe(2)As(2) with a high transition temperature (T(c,rho=0) of 21.5 K, where rho=resistivity), a small transition width (DeltaT(c)=1.3 K), a superior critical current density J(c) of 4.5 MA cm(-2) (4.2 K) and strong c-axis flux pinning. Implementing SrTiO(3) or BaTiO(3) templates to match the alkaline-earth layer in the Ba-122 with the alkaline-earth/oxygen layer in the templates opens new avenues for epitaxial growth of ferropnictides on multifunctional single-crystal substrates. Beyond superconductors, it provides a framework for growing heteroepitaxial intermetallic compounds on various substrates by matching interfacial layers between templates and thin-film overlayers.

12.
Phys Rev Lett ; 105(23): 237002, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231497

RESUMO

Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).

13.
Phys Rev Lett ; 105(16): 167003, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230998

RESUMO

The normal state properties of the recently discovered ferropnictide superconductors might hold the key to understanding their exotic superconductivity. Using point-contact spectroscopy we show that Andreev reflection between an epitaxial thin film of Ba(Fe(0.92)Co(0.08))2As2 and a silver tip can be seen in the normal state of the film up to temperature T∼1.3T(c), where T(c) is the critical temperature of the superconductor. Andreev reflection far above T(c) can be understood only when superconducting pairs arising from strong fluctuation of the phase of the complex superconducting order parameter exist in the normal state. Our results provide spectroscopic evidence of phase-incoherent superconducting pairs in the normal state of the ferropnictide superconductors.

14.
Nature ; 411(6837): 558-60, 2001 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-11385563

RESUMO

The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7 T at liquid helium temperature (4.2 K), significantly lower than about 10 T for Nb-Ti (ref. 6) and approximately 20 T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2 K greater than 14 T. In addition, very high critical current densities at 4.2 K are achieved: 1 MA cm-2 at 1 T and 105 A cm-2 at 10 T. These results demonstrate that MgB2 has potential for high-field superconducting applications.

15.
Nature ; 410(6825): 186-9, 2001 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11242073

RESUMO

The discovery of superconductivity at 39 K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures, their in-field performance is compromized by their large anisotropy, the result of which is to restrict high bulk current densities to a region much less than the full magnetic-field-temperature (H-T) space over which superconductivity is found. Moreover, the weak coupling across grain boundaries makes transport current densities in untextured polycrystalline samples low and strongly sensitive to magnetic field. Here we report that, despite the multiphase, untextured, microscale, subdivided nature of our MgB2 samples, supercurrents flow throughout the material without exhibiting strong sensitivity to weak magnetic fields. Our combined magnetization, magneto-optical, microscopy and X-ray investigations show that the supercurrent density is mostly determined by flux pinning, rather than by the grain boundary connectivity. Our results therefore suggest that this new superconductor class is not compromized by weak-link problems, a conclusion of significance for practical applications if higher temperature analogues of this compound can be discovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...